
Improvement of the FFT-based Poisson Solver in IMPACT

Improvement of the FFT-based Poisson Solver in

IMPACT

X. Sherry Li Ji Qiang
Lawrence Berkeley National Lab

ComPASS Meeting, UCLA, Dec. 2-3, 2008

1/13



Improvement of the FFT-based Poisson Solver in IMPACT

Outline

Outline

IMPACT code structure

Code optimization

Results

Future work

2/13



Improvement of the FFT-based Poisson Solver in IMPACT

IMPACT code structure

IMPACT-Z

◮ Model high intensity, high brightness beams in linear
accelerators (Poisson-Vlasov integral equation)

◮ 3D Particle-In-Cell code with two domains: charged particles
and the electric field generated by the charged particles

◮ Simulation cycle:

1. deposit charge density on grid points
2. solve Poisson equation for field vector (now FFT-based)
3. interpolate the field vector
4. advance particles

◮ 6 Poisson solvers for different Boundary Conditions:
◮ transverse open or closed BC with round or rectangular shape
◮ longitudinal open or periodic boundary conditions

3/13



Improvement of the FFT-based Poisson Solver in IMPACT

IMPACT code structure

IMPACT-Z Parallelization
Parallelization is based on Domain Decomposition:

◮ 3D grids Nx × Ny × Nz

◮ 2D processor mesh P = Py × Pz is used for the block
distribution on the y–z plane.

◮ Grid points along Nx dimension are local to one processor,
and each processor holds a block column of the grid points
along Nx dimension.

Ny_local
Z

Y X

P

P P

P0 1

2 3

Nx

Nz_local4/13



Improvement of the FFT-based Poisson Solver in IMPACT

IMPACT code structure

Case of open BC

◮ Method based on convolution of the Green function

(1) forward FFT
(2) forward FFT to compute convolution of the Green function
(3) inverse FFT

all with double-sized computational domain

5/13



Improvement of the FFT-based Poisson Solver in IMPACT

IMPACT code structure

Case of open BC

◮ Method based on convolution of the Green function

(1) forward FFT
(2) forward FFT to compute convolution of the Green function
(3) inverse FFT

all with double-sized computational domain

◮ General steps of parallel 3D FFT
◮ 1D FFT along X (local)
◮ transpose (communication)
◮ 1D FFT along Y (local)
◮ transpose (communication)
◮ 1D FFT along Z (local)
◮ (optional) transpose (communication)

5/13



Improvement of the FFT-based Poisson Solver in IMPACT

IMPACT code structure

Open BC Poisson solver

(1) FFT3D

1. fft1d(Nx, N local
y ∗ N local

z )
(real-to-complex)

2. transpose3d(y → x)

3. fft1d(Ny , N local
x ∗ N local

z )

4. transpose3d(z → x)

5. fft1d(Nz , N local
x ∗ N local

y )

(2) GreenFunction

1. fft1d(Nx, N local
y ∗ N local

z )
(real-to-complex)

2. transpose3d(y → x)

3. fft1d(Ny , N local
x ∗ N local

z )

4. transpose3d(z → x)

5. fft1d(Nz , N local
x ∗ N local

y )

(3) INVFFT3D

1. invfft1d(Nz , N local
x ∗ N local

y )

2. transpose3d(y → z)

3. invfft1d(Ny , N local
x ∗ N local

z )

4. transpose3d(x → z)

5. invfft1d(Nx, N local
y ∗ N local

z )
(complex-to-real)

6/13



Improvement of the FFT-based Poisson Solver in IMPACT

Code optimization

Code optimization

◮ Multiple 1D FFTs with same length.
Each function fft1d(n,m) involves a distributed 3D array of
size (n, l2, l3), where m = l2 ∗ l3.

◮ OLD: wraps m loops around the call to each individual 1D
FFTW function.

◮ NEW: use the FFTW function that takes as input the multiple
vectors of the same length, so that the plan is created once
and reused m times.

◮ Real-complex mixed data transformations.

◮ OLD: first converts real data to complex data, then calls a
complex-complex transform.

◮ NEW: directly calls the real-to-complex or complex-to-real
functions (available in FFTW 2.1.5), saveing half of the
operations.

7/13



Improvement of the FFT-based Poisson Solver in IMPACT

Code optimization

Case of closed BC

◮ Example: rectangular pipe with transverse finite and
longitudinal open

◮ Only involves Sine transform, which can be obtained by FFT

◮ 3D FFT structure in Poisson solver

1. transpose3d(y → x)

2. sinft(Ny, N
local
x ∗ N local

z )
(real-to-complex)

3. transpose3d(x → y)

◮ Similar optimizations : exploit multiple transformations of the
same length and real-complex mixed data types

8/13



Improvement of the FFT-based Poisson Solver in IMPACT

Results

Benchmark configuration

◮ Codes
◮ fftw-new

◮ fftw-old
◮ num-recipe - Numerical Recipe

(–) length limited by power-of-two; copyright issue

◮ Inputs
◮ 20M particles on 1283 grids (∼ 10 particles per grid point)
◮ 40M particles on 1283 grids

◮ Machines

System Cray XT4 (Opteron) IBM Power5 (575)
(franklin) (bassi)

Clock (GHz) 2.6 1.9
DP Gflops/Core 5.2 7.6

Cores/Node 2 8
OS Compute Node Linux AIX

Compiler ftn -O3 -fastsse mpxlf90 r -O3 -qstrict

9/13



Improvement of the FFT-based Poisson Solver in IMPACT

Results

Results – time-ratio of OLD over NEW

◮ Time breakdown: ufield (field solver), total

16 64 256 1024
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

143.51

367.12

74.72

143.31

46.07

69.77

31.46

43.13

processors

tim
e 

ra
tio

time ratio of UFIELD and TOTAL over FFTW−new

 

 

ufield: fftw−old
total: fftw−old
ufield: num−recipe
total: num−recipe

(a) Cray XT4

16 64 256
0

2

4

6

8

10

12

241.69

551.31

121.79

213.48

84.64

116.49

processors

tim
e 

ra
tio

time ratio of UFIELD and TOTAL over FFTW−new

 

 

ufield: fftw−old
total: fftw−old
ufield: num−recipe
total: num−recipe

(b) IBM Power5

10/13



Improvement of the FFT-based Poisson Solver in IMPACT

Results

Summary of results

◮ Statistics of open BC case

Cray XT4 (Opteron) IBM Power5 (575)
(franklin) (bassi)

Improvement
ufield 3.5 x 10 x
total 2 x 2 x

Fraction of time in ufield
fftw-old 39-72% 40-72%
fftw-new 18-42% 6-29%

11/13



Improvement of the FFT-based Poisson Solver in IMPACT

Results

Summary of results

◮ Statistics of open BC case

Cray XT4 (Opteron) IBM Power5 (575)
(franklin) (bassi)

Improvement
ufield 3.5 x 10 x
total 2 x 2 x

Fraction of time in ufield
fftw-old 39-72% 40-72%
fftw-new 18-42% 6-29%

◮ Case of the closed BC
◮ ufiled improved 32%, total improved 8%

11/13



Improvement of the FFT-based Poisson Solver in IMPACT

Future work

Future work

◮ Poisson solver
◮ possibility of improving transpose in 3D FFT
◮ non-FFT based Poisson solver, such as multigrid-based, which

has better algorithmic complexity
◮ boundary conditions?

◮ Part of the code other than Poisson solver

12/13



Improvement of the FFT-based Poisson Solver in IMPACT

Future work

QUESTIONS at the Meeting

◮ “plan creation” done only once, memorize it, then pass
around an extra “plan” argument for all the relevant routines

◮ need BC other than those implemented in IMPACT?

◮ iterative solver starting from the result of the Poisson solver at
a previous step

13/13


	Outline
	IMPACT code structure
	Code optimization
	Results
	Future work

